Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We present a systematic framework to quantify the interplay between coherence and wave-particle duality in generic two-path interference systems. Our analysis reveals a closed-form duality ellipse (DE) equality, that rigorously unifies visibility (a traditional waveness measure) and predictability (a particleness measure) with degree of coherence, providing a complete mathematical embodiment of Bohr's complementarity principle. Extending this framework to quantum imaging with undetected photons (QIUP), where both path information and photon interference are inherently linked to spatial object reconstruction, we establish an imaging duality ellipse (IDE) that directly connects wave-particle duality to the object's transmittance profile. This relation enables object characterization through duality measurements alone and remains robust against experimental imperfections such as decoherence and misalignment. Our results advance the fundamental understanding of quantum duality while offering a practical toolkit for optimizing coherence-driven quantum technologies, from imaging to sensing.more » « lessFree, publicly-accessible full text available July 8, 2026
An official website of the United States government
